

La Geomalla AMANCO STIFFNESS es una estructura de polipropileno conformada por costillas conectadas por nodos, que debido a su proceso de fabricación, brinda una geometría de apertura entre costillas suficiente para permitir la trabazón de materiales granulares, proporcionando un confinamiento lateral que genera un incremento a la resistencia al corte, creando un sistema que presenta un mayor módulo de rigidez y estabilidad, respecto a un suelo sin ningún elemento de refuerzo que pueda soportar estos esfuerzos.

En el caso de estabilización de suelos blandos donde se pueden generar problemas de asentamientos diferenciales en zonas arcillosas o arenosas, la geomalla tiene la función de distribuir en un área mayor los esfuerzos transmitidos por efecto de las cargas, aumentando así la capacidad de carga del suelo.

VENTAJAS Y BENEFICIOS

- Aumenta la vida útil de la estructura inicial.
- Disminuye espesores de granulares al reemplazar parte de estos por el aporte que genera la geomalla.
- Incrementa los módulos elásticos del material con los que interactúa.
- Disminución del impacto ambiental cuando se reduce el espesor de granulares, ya que éste es un recurso natural no renovable.
- Fácil instalación.
- Reduce costos y tiempos de construcción.

CAMPOS DE APLICACIÓN

- Refuerzo de suelos blandos.
- Refuerzo de materiales granulares en vías y terraplenes.
- Refuerzo secundario en muros de contención.
- Refuerzo de terraplenes en vías férreas y pistas aéreas.

FUNCIONES

Estabilización

Refuerzo

PROPIEDADES MECÁNICAS	NORMA	UNIDAD	VALOR	
			MS233⁵	MS350⁵
Módulo Rigidez Inicial @ 0.5% Elongación¹	ASTM D66374	kN/m	390	570
Módulo de Rigidez @ 50% de la Tensión Máxima ²	ASTM D66374	kN/m	320	500
Módulo de Rigidez Cuerda ³	ASTM D66374	kN/m	233	350
INTEGRIDAD ESTRUCTURAL	NORMA	UNIDAD	VALOR	
			MS233	MS350
Eficiencia en el Nodo / Unión	ASTM D7737/66376	%	≥95	≥95
Modulo de Estabilidad de Apertura	ASTM D7864 ⁷	m-N/grad	0.37	0.75
DURABILIDAD	NORMA	UNIDAD	VALOR	
			MS233	MS350
Resistencia al Daño Químico ⁸	EPA 9090A	%	100	100
Resistencia a la Degradación por Rayos UV ⁹	ASTM D4355/6637 ¹⁰	%	100	100
Contenido Negro de Carbón	ASTM D1603	%	≥0.5	≥0.5
CARACTERÍSTICAS FÍSICAS ¹¹	NORMA	UNIDAD	LONGITUDINAL ¹² TRANSVERSAL ¹²	
			MS233 MS350	MS233 MS350
Distancia entre Centros de Costillas	Medido	mm	40 40	40 40
Ancho a la Mitad de la Costilla	Medido	mm	2.4 2.4	3.1 3.7
Profundidad a la Mitad de la Costilla	Medido	mm	1.3 2.4	0.7 1.0
Geometría de las Costillas	Rectangular			
Geometría de la Apertura de las Costillas	Cuadrada			

Notas:

- 1. Módulo tangencial.
- 2. Módulo secante E50.
- 3. Módulo de rigidez considerado dentro de un rango de pequeñas deformaciones y un rango elástico. (Dominio lineal).
- 4. Todos los valores de tensión y deformación se basan en los resultados de las pruebas de laboratorio de acuerdo con la norma ASTM D6637 a la temperatura de 21 1°C.
- 5. Los módulos de rigidez son medidos bajo una "deformación establecida"* para cada una de las direcciones que conforman la geometría de la geomalla y el valor aquí mostrado se calculó como la media aritmética de los ensayos para cada muestra, según el procedimiento descrito en el método de ensayo ASTM D6637.
- 6. Realizado al 10% de la velocidad de deformación por minuto.

- 7. (Los términos "Módulo de estabilidad de apertura secante", "Módulo de rigidez torsional", "Módulo de cizallamiento en plano" y "Módulo de rigidez torsional" se han utilizado en la literatura para describir esta misma propiedad).
- 8. Pruebas de inmersión 120 días.
- 9. Exposición de 500 horas.
- 10. Una vez sometidas las muestras a los daños mencionados estas deben ser ensayadas con el método de ensayo ASTM D6637.
- 11. Valores nominales.
- 12. SL= Sentido Longitudinal, ST= Sentido Transversal.

*Pequeñas deformaciones, deformaciones de diseño y deformaciones esperadas en el proceso de construcción. Salvo que se indique lo contrario, los valores mostrados son los Valores Mínimos Promedio por Rollo/VMPR, medido de acuerdo con la norma ASTM D4759. CONVENCIONES:

ASTM: American Society for Testing and Materials. • N. A.: No aplica.

Operamos bajo sistemas internacionales de control de calidad; Contamos con la acreditación GAI LAP (The Geosynthetic Institute).

La presente ficha técnica está vigente a partir de mayo de 2022. Nos reservamos el derecho de introducir las modificaciones de especificaciones que consideremos necesarias para garantizar la óptima calidad y funcionalidad de nuestros productos sin previo aviso. La información aquí contenida se ofrece gratis y es, a nuestro leal saber y entender, cierta y exacta; no obstante, todas las recomendaciones y sugerencias están hechas sin garantía, puesto que las condiciones de uso están fuera de nuestro control y es responsabilidad exclusiva del usuario. Por favor verificar los datos de esta especificación con el Departamento de Ingeniería para confirmar que la información está vigente.

